
Deep Learning at Scale for GPU
poor

Practice Examination Questions

Author: Harry Coppock, Module Code: 70010

Academic Year: March 2025

Notes

• These are some rough practice questions designed to reflect the type of exam ques-
tions that you may face.

• Marks are rough and maybe scaled to fit exam-specific requirements.

• Solutions will not be provided; rather discussion on EdStem is encouraged.

1



Deep Learning for the GPU poor Practice Questions

Question 1: Estimating scale in Deep Learning
Consider the recently proposed MLP-Mixer model with the following specifications:

Figure 1: MLP-Mixer Architecture

Where: U∗,i = X∗,i + W2σ (W1 LayerNorm(X)∗,i) , for i = 1 . . . C, (MLP1)
Yj,∗ = Uj,∗ + W4σ (W3 LayerNorm(U)j,∗) , for j = 1 . . . S.(MLP2)

• X ∈ Rs×c

• Patches, s = 128

• Hidden dimension, c = 1024

• MLP1:W1 ∈ Rds×s, W2 ∈ Rs×ds

• MLP2:W3 ∈ Rdc×c, W4 ∈ Rc×dc

• Channel-mixing MLP hidden dimension: dc = 4096

• Patch-mixing MLP hidden dimension: ds = 512

• Number of Mixer layers: 24

• Batch size: 1024

(a) Calculate the number of FLOPs required to complete a forward and backward pass.
You can ignore the embedding layer, pooling, and final fully connected layer. This
is a rough calculation, so you can neglect certain operations! You will be marked
based on a log scale (be within one order of magnitude of the correct answer). Please
show your workings. [10 marks]

(b) Calculate the total memory requirements (in MB) for storing all activations dur-
ing the forward pass of the entire MLP-Mixer model. Assume all values/parameters
are stored in 32-bit floating-point format and no gradient checkpointing is applied.
Please only consider the activations in the Mixer Layer (you can ignore the embed-
ding layer and global average pooling). [10 marks]

(c) Why do the MLP-Mixer authors claim that this architecture has linear complexity
with respect to the number of input patches. [1 marks]

Page 2 Institution Name



Deep Learning for the GPU poor Practice Questions

Question 2: Memory Optimisation Techniques
(a) Explain the concept of gradient accumulation in detail. Specifically, what problem

does it solve and how. [6 marks]

(b) The following PyTorch code attempts to implement gradient accumulation. Please
fill in the required code.

1

2 def train_with_gradient_accumulation(
3 model , dataloader , criterion , optimizer , accumulation_steps=4
4 ):
5 model.train()
6 optimizer.zero_grad()
7 for batch_idx , (data, target) in enumerate(dataloader):
8 data, target = data.to(device), target.to(device)
9 output = model(data)

10 loss = criterion(output , target)
11

12 ###start of code###
13

14

15 ###end of code###
16

17 if (batch_idx + 1) % accumulation_steps == 0:
18 ###start of code###
19

20

21 ###end of code###

[4 marks]

(c) Describe gradient checkpointing in detail. How does it trade off computation for
memory, and in what circumstances should it be used? [4 marks]

Page 3 Institution Name



Deep Learning for the GPU poor Practice Questions

Question 3: Mixture of Experts
(a) Briefly describe the Mixture of Experts (MoE) architecture, including its key compo-

nents and how it differs from standard Transformer models. The following diagram
represents a simplified Mixture of Experts layer. As part of your explanation, label
each component and explain their functions. Finally detail the motivation behind
MoE in the context of scale. [8 marks]

Input xt A

B

B

...

B

C

C

C

D Output yt

(b) Explain the phenomenon of “routing collapse” in Mixture of Experts models, what
causes it and detail 2 strategies which can be employed to reduce this issue?
[4 marks]

Page 4 Institution Name



Deep Learning for the GPU poor Practice Questions

Question 4: Parameter-Efficient Fine-Tuning
(a) Consider a pre-trained Transformer block with a hidden dimension of 1024 and 1

attention head. If you apply LoRA with rank r = 8 to the query and value projection
matrices:

(i) Calculate the number of trainable parameters in the original transformer block
projection matrices (k, v, q, o). [3 marks]

(ii) Calculate the number of trainable parameters with the above LoRA setting.
[3 marks]

(iii) Does LoRA increase or decrease the FLOP count for a forward pass? Explain
your answer. [2 marks]

(b) The following PyTorch code attempts to implement LoRA for a linear layer. Identify
2 issues with the implementation. Noting that there are 4 issues in total. +2 points
for each identified issue and -2 points for incorrect suggestions. Identifying all 4
issues gets you no more marks, just some kudos! The minimum mark for this
question is 0.

1 class LoRALayer(nn.Module):
2 def __init__(self, base_layer , rank=4, alpha=1.0):
3 super().__init__()
4 self.base_layer = base_layer
5 self.rank = rank
6 self.alpha = alpha
7

8 # Get input and output dimensions from the base layer
9 in_features = base_layer.in_features

10 out_features = base_layer.out_features
11

12 # Initialise LoRA matrices
13 self.lora_A = nn.Parameter(torch.zeros(in_features , rank))
14 self.lora_B = nn.Parameter(torch.zeros(rank, out_features)

)
15

16 # Initialise with random values
17 nn.init.normal_(self.lora_A , std=0.02)
18 nn.init.normal_(self.lora_B)
19

20 def forward(self, x):
21 # Original output
22 base_output = self.base_layer(x)
23

24

25 lora_output = (x @ self.lora_A) @ self.lora_B
26

27 return base_output + lora_output

[4 marks]

(c) Why for BFloat16 do we need to store a full precision copy of the model weights
but in QLoRa we only need one copy of the pretrained weights in NFloat4?
[6 marks]

Page 5 Institution Name


